Abstract Syntax


Con   (c)   ⟶ (named constructors)
Var   (n)   ⟶ (named variables)


Type (τ,k,σ)
        ::= TyCon                         (type constructors)
         |  Var                           (type variables)
         |  'λ' Var ':' Type '.' Type     (type abstraction)
         |  Type Type                     (type application)

TyCon   ::= Con                           (primitive type constructors)
         |  'Data' | 'Effect' | 'Region'  (basic kind constructors)
         |  '(→)'  | 'Unit'   | 'Void'    (basic data type constructors)
         |  'Read' | 'Write'  | 'Alloc'   (basic effect type constructors)
         |  '⋁' Type Nat                  (least upper bound of types)
         |  '⊥' Type                      (least element of a type)
         |  '∀' Type                      (universal quantification)

The basic kind constructors are Data, Effect and Region for the kind of data, effect and region type respectively. The function type constructor (→) is usally written infix in sugared presentations. The Unit type classifies a set of values with the single element (). The Void type classifies the empty set.

The type constructor is used to express type sums, where is an empty sum. Both are annotated with the kind of their result types.

The quantifier constructor is annotated with the kind of its result type.

Syntactic Sugar for Types

t1 → t2       ≡ (→) t1 t2

t1 + t2       ≡ ⋁ k 2 t1 t2
t1 + t2 + t3  ≡ ⋁ k 3 t1 t2 t3

⊥             ≡ ⊥ k

∀ n : k. t    ≡ (∀ k) (λ n : k. t)

The function type constructor (→) is usually written infix.

When the kind is clear from context we use the infix (+) operator to express type sums.

When the kind is clear from context, the kind argument on (⊥) is elided.

Quantifiers that bind names are desugared to an application of the associated type constructor and a type abstraction. Representing the different quantifiers as constructors allows us to retain a single binding form for types.


Exp (e)
       ::= DaCon                                (data constructor)
        |  Var                                  (variable)

        |  'λ' Var ':' Type '.' Exp             (term abstraction)
        |  Exp Exp                              (term application)

        |  'Λ' Var ':' Type '.' Exp             (type abstraction)
        |  Exp Type                             (type application)

        |  'let'    Bind   'in' Exp             (let binding)
        |  'letrec' BindT+ 'in' Exp             (recursive let binding)

        |  'case'   Exp  'of' Alt+              (case matching)

        |  'private' Var 'with' Sig+ 'in' Exp   (region introduction)

        |  'extend'  Var
             'using' Var 'with' Sig+ 'in' Exp   (region extension)

        |  'weakeff' Type 'in' Exp              (effect weakening)
        |  'box' Exp                            (box a computation)
        |  'run' Exp                            (run a suspension)

DaCon  ::= '()'                                 (builtin unit data constructor)
        |   Con                                 (named data constructor)

Bind   ::= Var '='Exp                           (binding)
BindT  ::= Var ':' Type '=' Exp                 (typed binding)
Sig    ::= Var ':' Type                         (type signature)

Alt    ::= Pat '→' Exp                          (case alternative)
Pat    ::= _ | DaCon Sig+                       (case pattern)

The syntax of constructors and variables, term abstraction and application, type abstraction and application, case-matching and let-binding is standard.

The private construct introduces a new region variable along with capabilities of the given signatures. Both the region variable and names of the capabilities are in scope in the body expression.